Biosignature Gases in H2-dominated Atmospheres on Rocky Exoplanets
نویسندگان
چکیده
Super Earth exoplanets are being discovered with increasing frequency and some will be able to retain stable H2-dominated atmospheres. We study biosignature gases on exoplanets with thin H2 atmospheres and habitable surface temperatures, by using a model atmosphere with photochemistry, and biomass estimate framework for evaluating the plausibilty of a range of biosignature gas candidates. We find that photochemically produced H atoms are the most abundant reactive species in H2 atmospheres. In atmospheres with high CO2 levels, atomic O is the major destructive species for some molecules. In sun-Earth-like UV radiation environments, H (and in some cases O) will rapidly destroy nearly all biosignature gases of interest. The lower UV fluxes from UV quiet M stars would produce a lower concentration of H (or O) for the same scenario, enabling some biosignature gases to accumulate. The favorability of low-UV radiation environments to accumulation of detectable biosignature gases in an H2 atmosphere is closely analogous to the case of oxidized atmospheres, where photochemically produced OH is the major destructive species. Most potential biosignature gases, such as DMS and CH3Cl are therefore more favorable in low UV, as compared to solar-like UV, environments. A few promising biosignature gas candidates, including NH3 and N2O, are favorable even in solar-like UV environments, as these gases are destroyed directly by photolysis and not by H (or O). A more subtle finding is that most gases produced by life that are fully hydrogenated forms of an element, such as CH4, H2S, are not effective signs of life in an H2-rich atmosphere, because the dominant atmospheric chemistry will generate such gases abiologically, through photochemistry or geochemistry. Suitable biosignature gases in H2-rich atmospheres for super Earth exoplanets transiting M stars could potentially be detected in transmission spectra with the James Webb Space Telescope.
منابع مشابه
Biosignature Gases in H-dominated Atmospheres on Rocky Exoplanets
Super Earth exoplanets are being discovered with increasing frequency and some will be able to retain stable H2-dominated atmospheres. We study biosignature gases on exoplanets with thin H2 atmospheres and habitable surface temperatures, by using a model atmosphere with photochemistry, and biomass estimate framework for evaluating the plausibilty of a range of biosignature gas candidates. We fi...
متن کاملPhotosynthesis in Hydrogen-Dominated Atmospheres
The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a th...
متن کاملToward a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry.
UNLABELLED Thousands of exoplanets are known to orbit nearby stars. Plans for the next generation of space-based and ground-based telescopes are fueling the anticipation that a precious few habitable planets can be identified in the coming decade. Even more highly anticipated is the chance to find signs of life on these habitable planets by way of biosignature gases. But which gases should we s...
متن کاملPhotochemistry in Terrestrial Exoplanet Atmospheres. Ii. Hs and so Photochemistry in Anoxic Atmospheres
Sulfur gases are common components in the volcanic and biological emission on Earth, and are expected to be important input gases for atmospheres on terrestrial exoplanets. We study the atmospheric composition and the spectra of terrestrial exoplanets with sulfur compounds (i.e., H2S and SO2) emitted from their surfaces. We use a comprehensive one-dimensional photochemistry model and radiative ...
متن کاملPhotochemistry in Anoxic Atmospheres
Sulfur gases are common components in the volcanic and biological emission on Earth, and are expected to be important input gases for atmospheres on terrestrial exoplanets. We study the atmospheric composition and the spectra of terrestrial exoplanets with sulfur compounds (i.e., H2S and SO2) emitted from their surfaces. We use a comprehensive one-dimensional photochemistry model and radiative ...
متن کامل